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Localized solutions in parametrically driven pattern formation

Tae-Chang Jo and Dieter Armbruster*
Department of Mathematics, Arizona State University, Tempe, Arizona 85287-1804, USA

~Received 28 October 2002; published 16 July 2003!

The Mathieu partial differential equation~PDE! is analyzed as a prototypical model for pattern formation
due to parametric resonance. After averaging and scaling, it is shown to be a perturbed nonlinear Schro¨dinger
equation~NLS!. Adiabatic perturbation theory for solitons is applied to determine which solitons of the NLS
survive the perturbation due to damping and parametric forcing. Numerical simulations compare the perturba-
tion results to the dynamics of the Mathieu PDE. Stable and weakly unstable soliton solutions are identified.
They are shown to be closely related to oscillons found in parametrically driven sand experiments.
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I. INTRODUCTION

The standard model for the instability of a harmonic o
cillator due to parametric forcing~parametric resonance! is
the Mathieu equation@1# which can be written as

Att1~v21e cosqt!A50. ~1!

Here,v is the eigenfrequency of the oscillator,e is a small
forcing amplitude, andq is the forcing frequency. The trivia
equilibrium becomes unstable ifv/q5k/2, k51,2, . . . . By
including nonlinearity and damping, the Mathieu equati
has become a prototype nonlinear oscillator for study
parametric resonance, in much the same way as the Lo
system and the van der Pol oscillator represent chaos
self-excited oscillations, respectively@2#.

Recently, Randet al. @3,4# and Armbrusteret al. @5# have
included spatial interactions into the Mathieu equation
study the continuum limit of a line of coupled pendula wi
vertical forcing@3# and to describe the pattern formation d
to the parametrically driven forcing. Motivating physical e
periments for the pattern formation aspects include the F
aday experiment of a vibrating layer of fluid@6# and related
experiments on vertically vibrating layers of sand@7#. In all
cases, the trivial equilibrium becomes unstable at a partic
forcing frequency and forcing amplitude, creating patterns
surface waves~sand patterns! that oscillate with half the fre-
quency of the forcing. It is hoped@5# that the spatially ex-
tended Mathieu equation@the Mathieu partial differentia
equation~PDE!# can be considered as a prototype for the
parametrically forced pattern formations, in such a way t
certain features in parametrically forced pattern format
experiments are universal, i.e., independent of the spe
physical mechanisms. The resonance region~Arnold tongue
@1#! for the 2:1 resonance (k51) is the largest in paramete
space, while higher-order Arnold tongues quickly close
We therefore concentrate the following discussion on the
resonance.

In addition to regular patterns, very localized patter
have been observed in these experiments. Standing so
waves were observed in Faraday experiments with fluid
Ref. @8#. The most spectacular localized phenomena
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called oscillons@9#. An oscillon is a small, circularly sym-
metric time dependent excitation that resembles an ac
volcano. It is subharmonic, that is, the frequency of the
cillon is half of the driving frequency. The oscillon resembl
a peak during one cycle of the container and a crater on
next cycle. The experiments show hysteresis: An oscillon
be observed only when the forcing amplitude decreases
certain range of the forcing frequency.

Localized structures have been discussed for vari
models: the nonlinear Schro¨dinger equation@10,11#, the
Ginzburg Landau equation@12–17#, the Swift Hohenberg
equation@18#, and others. Localized structures are, in ge
eral, explained through a homoclinic or heteroclinic or
~solitons! in a dynamical system@19,20#. Previous work on
the study of localized pattern formation related to parame
resonance includes specific hydrodynamic models for
analysis of the Faraday experiments@21#. The resulting cubic
nonlinear Schro¨dinger equation was analyzed by Laedke a
Spatschek@22# and by Elphick and Meron@23#.

The Mathieu PDE has been studied using a lo
dimensional Galerkin approximation in Refs.@3,4#. It shows
pattern formation through one or a few spatial modes. Ho
ever, since any localized structure has a very broad Fou
spectrum, a low-dimensional Galerkin approximation nec
sarily misses localized structures. The Mathieu PDE has
been studied using averaging@5#. The averaged Mathieu
equation turns out to be similar to the complex Ginzbu
Landau equation or the nonlinear Schro¨dinger equation
~NLS!. Armbruster et al. @5# performed local bifurcation
analysis and a numerical path following analysis, which
restricted to a small number of Fourier modes. They w
therefore not able to study localized structures.

This study takes advantage of the fact that the avera
Mathieu PDE can be considered as a perturbation of the n
linear Schro¨dinger equation. Specifically, the NLS is inte
grable and has a continuum of soliton solutions, which
spatially localized standing or traveling waves. Using ad
batic perturbation theory for solitons developed in Ref.@24#,
we derive a set of ordinary differential equations~ODEs! that
describe the behavior of the soliton solutions under pertur
tions. We show that these ODEs have nontrivial steady s
solutions, which represent solitons that survive the pertur
tions and that resemble spatially localized solutions of
NLS. Numerical simulations of the NLS and of the Mathie
PDE confirm the existence of these steady and oscilla
©2003 The American Physical Society13-1
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solitons, respectively. Depending on the perturbation par
eters, the stable steady state of the ODEs correspond
stable or weakly unstable solutions of the PDEs.

The rest of this paper is organized as follows. Section
starts out from the averaged Mathieu PDE. It is shown to
a specific perturbation of the NLS. Section II B uses t
adiabatic approximation to the NLS to derive a set of OD
Section II C analyzes these equations, and Sec. III comp
the numerical simulations of the ODE, the NLS, and t
Mathieu PDE near the localized solutions. We conclude
discussing the relationship of our work to Ref.@22# and with
an outlook for further work.

II. THE MATHIEU PDE

We consider a 2:1 resonance case for our study of Eq~1!
and add weak detuning, damping, spatial coupling, an
cubic nonlinearity. The resulting system, called the Math
partial differential equation, is

Att1A5e~dA2gAt2aA31 f cos 2tA1dAxx!, ~2!

whereA is a scalar variable andd,g, f ,d,a are constants for
detuning, damping, parametric forcing, spatial coupling, a
nonlinearity, respectively.

The ordinary differential equation for the case ofd50
has been discussed in many papers~e.g., Refs.@25–27#!.
Phase portraits for an undamped Mathieu equation are sh
in Fig. 1. In the case of negativea, the zero solution bifur-
cates subcritically at the bifurcation parameterf 50 whend
is negative, and bifurcates supercritically atf 52d whend is
positive. For 0, f ,22d andd,0, the system is bistable.

Following the analysis in Ref.@5#, we can average Eq.~2!
to get

ut5
e

2 F i H du1duxx2
3a

4
uuu2u1

f

2
ūJ 2guG . ~3!

FIG. 1. Phase portraits for the undamped nonlinear Math
equation~ODE! for a,0 in Eq. ~2!.
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At this stage, the averaging procedure is purely formal. Ho
ever, assuming that attractors of the Mathieu PDE~2! and the
averaged Eq.~3! can be captured by finite-dimensional sy
tems, the averaging theorem for ODEs applies and he
solutions to the averaged equation stayO(e) close to the
solutions of the original equation on a time scale ofO(1/e)
@26#.

Under the assumption that forcing, damping and, detun
~the parametersf ,g, and d) are one order of magnitud
smaller than spatial coupling and nonlinearity (d anda), we
can transform the averaged Mathieu PDE~3!. The transfor-
mations

t85S e

2D t, x85S 1

A2d
D x, u85SA2

3a

4 D u ~4!

lead to the scaled averaged Mathieu PDE

iut1
1

2
uxx1uuu2u52du2 igu2

f

2
ū, ~5!

where we have dropped the prime after the transformatio
After another transformation

u85exp~2 idt !u, ~6!

we can write Eq.~5! as a perturbed standard nonlinear Sch¨-
dinger equation

iut1
1

2
uxx1uuu2u5eP, ~7!

where

eP52 igu2
f

2
ū exp~22idt ! ~8!

is a small perturbation that slowly oscillates in time. Fro
now on, we assumea,0 which corresponds to a NLS with
focusing cubic nonlinearity. The parametersg, d, and f are
assumed to beO(e) in Eq. ~8!. We also assume that th
domain of thex variable is (2`,`) and that the equation
has fast decaying zero boundary conditions atx56`. The
following section will study Eq.~7! in detail. While there
exist many studies that analyzed the damped and driven N
~@28,29,22,30#!, they all focused on direct forcing, leading t
an extra constant term. They did not consider parame
forcing @represented inP by the term involvingū in Eq. ~8!#.
The only other analysis that deals with parametric forcing
Ref. @22#. We will comment on their work in the Conclusion

A. The perturbed nonlinear Schrödinger equation

A single soliton solution to the nonlinear Schro¨dinger@Eq.
~7! with e50] can be written as

u~x,t !52n sech@2n~x22mt2x0!#exp@ i2m~x22mt2x0!

1 i ~2m212n2!t1 is0#, ~9!

u

3-2
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LOCALIZED SOLUTIONS IN PARAMETRICALLY . . . PHYSICAL REVIEW E68, 016213 ~2003!
for constantsn, m, x0, ands0, as shown in Ref.@31#. The
constantn determines the amplitude and the pulse width
the solitary wave. Its speed and frequency are affected by
constantm, and its phase constants are determined by
other two constantsx0 ands0. For the general type of soli
tary wave solutions~9!, the amplitude of the pulse is in
versely proportional to the pulse width. The speed of
solitary wave solution is independent of the pulse amplitu
which differs from the solitary wave solution of the Ko
rteweg de Vries equation.

The nonlinear Schro¨dinger equation has been studied w
different perturbations. Dissipative terms, some forc
terms, dispersion terms, some random functions as we
numerical simulation have been discussed in Re
@31,32,24,10#. In general, if the perturbation is purely diss
pative, it damps the soliton solution and eventually destr
the soliton. For general perturbations, a balance may e
which allows some solitons to survive.

B. Adiabatic approximation

To determine this balance, we are using the adiabatic
turbation theory@24# developed for the evolution of a singl
soliton solution under perturbations. Specifically, we para
etrize amplitude, frequency, velocity, and phase of the s
ton, and neglect any other changes in the shape of the p
and tail formation.

Therefore, we look for the soliton pulse solution to t
perturbed nonlinear Schro¨dinger equation~7! in the form of

u~x,t !52n sechk exp~ imk/n1 iv!, k52n~x2j!.
~10!

The envelope of the approximation~the sech profile! is kept
during the time evolution. In addition, we have some bala
between the amplitude and the width of the pulse, that is,
inverse proportionality between them.

With this ansatz, the parameters in Eq.~10! evolve ac-
cording to the following system of ordinary differential equ
tions:

dm

dt
5

e

2
ImE

2`

` tanhk

coshk
~2 iP !e2 imk/n2 ivdk, ~11!

dn

dt
5

e

2
ReE

2`

`

sechk~2 iP !e2 imk/n2 ivdk, ~12!

dj

dt
52m1

e

4n2
ReE

2`

` k

coshk
~2 iP !e2 imk/n2 ivdk,

~13!

dv

dt
52m

dj

dt
22m212n21

e

2n
Im E

2`

` 12k tanhk

coshk

3~2 iP !e2 imk/n2 ivdk, ~14!
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whereP stands for the perturbation@Eq. ~8!# evaluated with
the ansatzu(x,t) of Eq. ~10!. For the case of pure dissipativ
perturbation (g.0 andf 50), the integrals of the right-hand
sides reduce to

dm

dt
50,

dn

dt
522gn, ~15!

dj

dt
52m,

dv

dt
52m212n2. ~16!

These equations can easily be solved to give

m5m0 , n5n0exp~22gt !, ~17!

j52m0t1j0 , v52
n0

2

2g
@exp~24gt !21#12m0

2t1v0 ,

~18!

wherem0 , n0 , j0, andv0 are initial conditions form, nj,
and v, respectively. The amplitude of the solitary solutio
(2n) decays with time for positiveg, as expected. If the
initial speed (2m0) of the soliton is nonzero, the soliton os
cillates and drifts, but dies out.

C. The perturbation equations

Using complex integration, the integrals of Eqs.~11!–~14!
can be evaluated~see the Appendix!. The resulting system o
ordinary differential equations is

dm

dt
52

f pm2

n
cschS pm

n D sin~2v12dt !, ~19!

dn

dt
522gn1 f pm cschS pm

n D sin~2v12dt !, ~20!

dj

dt
52m1

f p

4n
cschS pm

n D Fpm

n
cothS pm

n D21Gcos~2v12dt !,

~21!

dv

dt
52m212n21

f pm

2n
cschS pm

n D
3F2pm

n
cothS pm

n D21Gcos~2v12dt !. ~22!

Note thatj decouples and we only have a system of th
variables. We use new variablesh and ṽ such that

h5
m

n
, ṽ5v1dt ~23!

to get a system of three autonomous equations:

dh

dt
52hFg2

f ph

sinh~ph!
sin~2ṽ !G , ~24!
3-3
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dn

dt
5nF22g1

f ph

sinh~ph!
sin~2ṽ !G , ~25!

dṽ

dt
5d12n2~h211!1

f ph

2 sinh~ph!

3F2ph cosh~ph!

sinh~ph!
21Gcos~2ṽ !. ~26!

The right-hand sides are not defined whenh50 since
sinh(0)50, but the limit exists such that ath50 we define

dh

dt
50,

dn

dt
5n@22g1 f sin~2ṽ !#,

dṽ

dt
5d12n21

f

2
cos~2ṽ !. ~27!

The nontrivial fixed points (n.0) are

h* 50, n* 5S 2
1

2
d6

1

4
Af 224g2D 1/2

,

ṽ* 5
1

2
arctanS 2

g

2n
*
2 1d

D . ~28!

There is only one nontrivial fixed point forf .A4d214g2

@regiona in Fig. 2#. There are two nontrivial fixed points fo
2g, f ,A4d214g2 when d,0 @region b in Fig. 2#. Note
that dj/dt is also zero at the fixed point (h* ,n* ,ṽ* ),
which gives us the constant solutionj5j* . These results
raise an important issue on the order of magnitude of
detuningd. While the original perturbation@Eq. ~7!# places
no restriction on the order of magnitude ofd, the above
results for the fixed points clearly indicate that all the para

FIG. 2. Parameter regions for the existence of nontrivial fix
points of the ordinary differential equations~24!–~26!: ~a! One
stable nontrivial fixed point.~b! Two nontrivial fixed points, one
stable and one unstable.
01621
e

-

etersf, g, andd have to be of the same order of magnitud
This implies that the adiabatic perturbation theory is an
folding analysis in a full neighborhood of zero for thos
three parameters.

The eigenvalues of the linearized system at these fi
points are

l522g,2g6Ag218 f n
*
2 cos~2ṽ* ! ~29!

giving us a stable fixed point for cos(2ṽ* ),0. Since f
.A4d214g2 in regiona, the only nontrivial fixed point is
stable. In regionb, one fixed point is stable and the other
unstable~Fig. 2!. The soliton

u~x,t !52n* sech„2n* ~x2j* !…exp~ i ṽ* ! ~30!

corresponding to a fixed point is the corresponding appro
mate solution to the perturbed nonlinear Schro¨dinger equa-
tion ~5!. It is a steady solution that neither drifts nor osc
lates. It becomes an approximation of a solution to
averaged Mathieu equation~3! after recovering the time
scalet, the length scalex, and the scale for the solutionu.

Here,

A~x,t !52n* sech„2n* ~x2j* !…cos~ t2ṽ* ! ~31!

is the approximate solution to the Mathieu partial different
equation. It has a pulselike spatial structure and can be
pected to be a good approximation on a time scale of
order of 1/e. Note that the solution~31! does not drift but
oscillates with a period of 2p, twice the forcing period.

III. NUMERICAL SIMULATIONS

To study the validity of our multistage perturbation ana
sis, we simulate three different equations and compare th
First, we simulate the three-dimensional~3D! ordinary dif-
ferential equations~24!–~26!. Second, we simulate the scale
averaged Mathieu PDE~the perturbed NLS! ~5!. We use a
central difference scheme for space differentiation and
Crank-Nicolson method for time integration. Last, we sim
late the time dependent Mathieu PDE~2!. We use central
difference schemes for both space and time differentiatio
The goal of these simulations is to determine whether att
tion to the stable nontrivial equilibria found analytically i
the ODEs~24!–~26! corresponds to attraction to stable so
tons in the perturbed NLS and to stable localized oscillonl
solutions in the Mathieu PDE.

A. Ordinary differential equations

We simulate the system of ordinary differential equatio
~24!–~26! with the parametrsf 50.05, d50.01, and g
50.0125. Figures 3~a!–3~c! shows the time evolutions o
each variable with various initial conditions. Solutions a
proach the nontrivial fixed point. Note that the variableuhu
always decreases and variables (m,v) spiral in after some
transient time as the linear stability analysis suggested.

The simulations also confirm the numerical value of t
nontrivial fixed point. The nontrivial fixed point, however,

d

3-4
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FIG. 3. Time evolution of solutions to Eqs.~24!–~26! for f 50.05, d50.01, andg50.0125, and various initial conditions:~a! h, ~b! n,

~c! ṽ, and~d! n.
m p-

s

not a global attractor. The solutions approach zero for so
initial conditions as shown in Fig. 3~d!. The basin of attrac-
tion for the nontrivial fixed point is mainly constrained byh
being small enough.
01621
e The time evolution of the corresponding adiabatically a
proximated soliton is shown in Fig. 4 at timet50, 25, and
1500. The profile att51500 in Fig. 4 is almost the same a
the nontrivial fixed point.
olution

FIG. 4. The adiabatically approximated soliton solutions parametrized by the time evolution of the ODEs~24!–~26! at t50 (•••),

25 ~-•-!, 1500~—! ~a! envelope~b! real part. Note that the graph for the soliton corresponding to the fixed point is the same as the s
at t51500.
3-5
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FIG. 5. Soliton solution~real part! corresponding to the nontrivial stable fixed point (•••) and numerical solution of the perturbe
nonlinear Schro¨dinger equation ~—!. Shown are real parts of the soliton att50,30,80,120 with initial condition ofu(x,0)
50.1 sech(0.1x)exp(1.3i ).
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B. Perturbed nonlinear Schrödinger equation

1. Region a

For the simulations of the perturbed nonlinear Sch¨-
dinger equation, we present results for parametersf 50.05,
d50.01, andg50.0125. These values correspond to reg
a in Fig. 2. Other parameter values in regiona show quali-
tatively similar features. Figure 5 shows that, given init
conditions near or a little away from the corresponding n
linear fixed point, the real parts of the numerical solutio
initially move to or stay near the adiabatic approximation
the nontrivial fixed point and then they lose their ‘‘sec
profiles. Tip splitting of the peak of the soliton destroys t
shape of a one-soliton solution.

As time increases, the numerical solution continues
split the tip of the central peak until it develops regula
spaced patterns. Figure 6~a! shows patterns for four differen
initial conditions att5500.

The tendency to approach the corresponding nontri
fixed point solution can be seen in Fig. 7~b!, which shows the
distances~2-norm! between numerical solutions and th
adiabatic stable soliton solution. The norm decreases initi
for all initial conditions, but starts to increase eventually.
shows that the adiabatic soliton is unstable in the pertur
nonlinear Schro¨dinger equation, even though it is stab
within the lower-dimensional approximation.
01621
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2. Region b

The parametersf 50.05, d521.0, andg50.0125 are
representative for simulations in regionb of Fig. 2. In this
case, an initial condition near the stable fixed point leads
stable soliton solution of the perturbed NLS. An initial co
dition corresponding to the snapshot of a moving soliton
shown in Fig. 8. The soliton initially moves to the right, b
slows down and stops moving in a shape correspondin
the fixed point of the adiabatic approximation. The pha
shift shows the effect of a variablej, describing the phase o
the solitons, in Eqs.~19!–~22!. In this parameter region, th
adiabatic solution is stable not only for the lowe
dimensional ordinary differential equation but also for t
perturbed nonlinear Schro¨dinger equation.

C. Mathieu partial differential equation

It is important to note that anO(1) time scale in the
perturbed NLS@Eq. ~5!# corresponds to anO(1/e) time scale
in averaged Mathieu PDE@Eq. ~3!#. Hence, we expect the
unstable soliton in regiona to persist as an oscillon for a
longer time.

For d50.01, f 50.05, andg50.0125~in the region ofa
in Fig. 2!, Fig. 9 shows four snapshots within one period
an oscillon solution. The time evolution of such an oscill
is shown in Fig. 10. The solution oscillates and tends
3-6



LOCALIZED SOLUTIONS IN PARAMETRICALLY . . . PHYSICAL REVIEW E68, 016213 ~2003!
FIG. 6. Long time behavior of the real parts of the solutions of the perturbed NLS with various initial conditions att5500: u(x,0)
50.2 sech(0.2x)exp(1.3i ), u(x,0)50.15 sech(0.15x)exp(0.0001x11.2i ), u(x,0)50.15 sech(0.15x)exp(0.3x11.3i ), and u(x,0)
50.15 sech(0.15x)exp(0.3i ).
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FIG. 7. Distances~2-norm! between the numerical solution
and the stable adiabatic soliton solution~real parts! with various
initial conditions: u(x,0)50.2 sech(0.2x)exp(1.3i ), u(x,0)
50.1 sech(0.1x)exp(1.3i ), u(x,0)50.15 sech(0.15x)exp(0.0001x
11.2i ), andu(x,0)50.15 sech(0.15x)exp(0.3i ).
01621
adjust its amplitude to an oscillon initially. It loses its se
profile after a significantly longer time than in the case of t
NLS.

In region ofb of Fig. 2 ~parametersd520.7, f 50.1, g
50.04, e50.5, d50.5, anda524/3), we find a oscillon-
like solution~Fig. 11! that is stable for as long as we care
simulate. Typically, amplitude and profile of the oscillon a
determined by the system parameters, regardless of in
condition. However, the final position of the oscillon is d
termined by the initial condition which may lead to a tra
sient drift.

We also observe that solutions die out for different init
conditions. This corresponds to the fact that regionb is a
bistable region for the Mathieu PDE.

IV. CONCLUSION AND FUTURE WORK

We have studied the effect of parameteric driving on
formation of localized subharmonically oscillating pattern
Such patterns have been observed experimentally in sha
sand experiments and are called oscillons. As a prototyp
such a parameterically driven pattern formation, we stud
the Mathieu partial differential equation with weak dampin
detuning, and nonlinearity. We showed that, upon averag
3-7
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FIG. 8. The real part of the numerical solution~—! and the stable adiabatic solution (•••) at t50,100,400, and 800 with initial condition
u(x,0)51.42 sech(1.42x)exp(0.3x11.3i ).
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the Mathieu PDE, the resulting system can be rescaled
perturbed cubic nonlinear Schro¨dinger equation.

Adapting a perturbation method for solitons derived
Ref. @24#, called the adiabatic approximation, we derive
system of ordinary differential equations which represe
the time evolution of crucial parameters of a soliton~ampli-
tude, frequency, and phase! under the perturbation term
coming from the Mathieu PDE. We show that nontrivi
stable fixed points of this system of ODEs exist in the sa
parameter regions where the Mathieu equation has nontr
fixed points. However, the fixed points of the adiabatic a
proximation represent isolated soliton solutions to the N
equation which survive the presence of dissipative and fo
ing terms. This is reminiscent of a Melnikov analysis of
perturbation to an integrable nonlinear ODE@2#, which al-
lows us to determine the periodic orbit that survives the n
integrable perturbations.

The resulting localized solution of the Mathieu PDE h
many features of the oscillons: They are subharmonic, t
do not drift ~although most of the solitons of the NLS do!,
and they can be arbitrarily shifted in space, assuming
infinitely extended domain. Experimental evidence@7# shows
similar features for the oscillons: They are localized, subh
monic, seem to occur at random positions, do not travel s
tematically but seem to jitter randomly.
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The stability analysis of these localized solutions sho
some interesting complications. Figure 2 shows two regi
in the parameter space of forcing and detuning, labeleda and
b, where we find stable solutions to the adiabatic ODE. N
merical simulations of the Mathieu PDE as well as the p
turbed NLS, however, show stable attraction to the cor
sponding soliton solution of the Mathieu PDE only in regio
b. In region a, the simulations show an initial attraction t
the steady soliton solution. However, after what seems lik
time scale ofO(1) for the NLS and a time scale ofO(1/e)
for the Mathieu PDE, the soliton shows successive tip sp
ting, until an extended pattern in space is achieved. In reg
b, depending on initial conditions, we also find solutions th
become attracted to zero. Hence, region B is bistable for
Mathieu ODE and shows a stable localized oscillon solut
for the Mathieu PDE. This corresponds to the fact that os
lons experimentally are associated with hysteresis.

Our analysis of the perturbed NLS is closely related
and complements, earlier work by Laedtke and Spatsc
@22# and by Elphick and Meron@23# on Faraday resonance i
fluids. Laedke and Spatschek analyzed the homoclinic o
~steady soliton! associated with the steady states of the p
turbed NLS. They determined the stability of this stationa
soliton by a linear perturbation analysis using opera
theory of periodic Schro¨dinger operators. They found tha
3-8
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FIG. 9. Four snapshots within one period of the Mathieu PDE ford50.01, f 50.05, g50.01 e50.01, d50.5, anda524/3. The
envelope corresponding to the fixed point of the ODEs is shown as the dashed line.

FIG. 10. Time evolution of the oscillonlike solution in the Mathieu PDE for an initial conditionA(x,0)50.3 sech(0.3x)cos(1.3),
At(x,0)50.3 sech(0.3x)sin(1.3). Parameters as in Fig. 9.
016213-9
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FIG. 11. Time evolution of a stable oscillonlike solution in the Mathieu PDE. Initial conditionA(x,0)51.2 sech(1.2x)cos(0.1x11.1),
At(x,0)51.2 sech(1.2x)sin(0.1x11.1).
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the stationary solution is linearly unstable in regiona in Fig.
2 and showed linear stability in regionb for a restricted set of
perturbations. Specifically, they show linear stability of t
nontrivial soliton with phase shift zero with respect to od
function perturbations. Numerical simulations confirmed
result and the transition to a regular pattern in regiona.

Their work complements the research presented her
the following sense. The adiabatic approximation used h
is a perturbation method on thesolution manifold of allthe
soliton solutions of the NLS. Our analysis allows us to d
termine the dynamics on this solution manifold under pert
bations. In this sense, it is aglobal method as opposed t
local analysis. In particular, we show that in regionb, the
system has three surviving solutions; a stable soliton, an
stable soliton, and the stable trivial solution. A basin of
traction for the stable soliton can be estimated. The cor
phase of the resulting stable localized solution can be de
mined based on an initial perturbation. Nevertheless,
adiabatic perturbation theory is still a finite-dimensional a
proximation to a PDE. In particular, it allows only perturb
tions that have zero boundary conditions at infinity. Hen
apparently, it does not include the perturbations, wh
makes the trivial solution unstable. This explains w
Laedke and Spatschek found the correct stability of the
calized solution in regiona and why the adiabatic perturba
tion method misses it.

Elphick and Meron@23# derive the perturbed NLS@Eq.
~7!# for the specific example of Faraday surface waves. T
derive a system of differential equations closely related
our Eqs. ~19!–~22! through an adiabatic-type perturbatio
method. Their analysis differs in two crucial points.

~1! The detuning term in Ref.@23# @d in our Eq.~8!# is of
one order larger than the forcing and the damping terms

~2! The perturbed soliton has no slow time evolution
the phase.
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As a result, in their ODEs for the perturbation equati
the terms of the order ofe in equation forh andv disappear.
Hence, the fixed points corresponding to solitons that surv
the perturbations are given by the solution of sin 2ṽ52g/f.
Our analysis, which allows for a phase variation, adds a s
ond constraintd12n21( f /2)cos 2ṽ50. Consequently, El-
phick and Meron describe only the bifurcation nearf 52g
and d,0, i.e., the transition into regionb in Fig. 2 from
below.

Our study extends these results by setting all parame
d,g, and f to the same order of magnitude. In effect th
treats the problem as a degenerate bifurcation probl
which allows an unfolding in a ball around (d,g, f )
5(0,0,0), thus allowing to extend the analysis tod.0 as
well as to the regiona of Fig. 2. Additionally, by allowing
for a slow time dependence of the phase, we can use the
evolution of j @Eq. ~21!# to determine the eventual exa
position of the soliton where it stops traveling, as a functi
of its initial perturbation.

There are the following interesting avenues for futu
work.

~1! We studied the cubic nonlinearity in the Mathieu PD
that leads to the focusing nonlinear Schro¨dinger equation. In

FIG. 12. Integration contourC.
3-10
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LOCALIZED SOLUTIONS IN PARAMETRICALLY . . . PHYSICAL REVIEW E68, 016213 ~2003!
a subsequent work, we will extend the work of Ref.@23# who
have also studied the defocusing case corresponding
dark soliton for the NLS to include a ball around (d,g, f )
5(0,0,0) in parameter space.

~2! Experiments are done with a two-dimensional surfa
and oscillons are really rotationally symmetric objects. T
extension of the Mathieu PDE to two spatial dimensions
places the second-order spatial derivative by a Laplac
However, the resulting averaged equation is not a sim
perturbation of the NLS and cannot be studied directly
the same perturbation methods. It remains to be seen whe
symmetry will allow us to reduce the two-dimensional sy
tem to the present study.

~3! Experiments are done in a finite domain. It see
reasonable to expect that approximate solitons will survive
a finite domain that is an order of magnitude larger tha
characteristic length of the soliton, but that needs to
proven. We would also expect that there is a boundary reg
of the size of the characteristic length of the soliton wh
boundary conditions and the soliton interact to form n
dynamics.

~4! Experiments show interacting oscillons: there are t
and three oscillon molecules@7# as well as almost spatially
extended oscillon patterns. A first step to model these in
acting oscillons is to study the perturbation theory of int
acting solitons.
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APPENDIX: EVALUATION OF EQS. „11…–„14…

The integrals in the Eqs.~11!–~14! can be evaluated by
complex integration using the residue theorem. Letz5x
1 iy be a complex variable andf (z) be a complex valued
function such that

f ~z!5tanhz sech2zeisz ~A1!

for any real values. Then, f (z) has singularities atz5 i (k
11/2)p for integersk. Let C be the contour as shown in Fig
12 consisting of the real axis from2R to R, z5 ip,2R<x
<R and two lines parallel to they axis, z5R, 0<y<p and
z52R, 0<y<p.

Then, the only singularity off (z) inside C is at z
5 ip/2, sayz0. Since f (z) has a pole of the order of 3 atz
5z0, the residue can be calculated as

residue5
1

2!
lim

z→z0

d2

dz2
~z2z0!3f ~z!5

1

2
s2e2ps/2. ~A2!

It is clear that the index ofC with respect toz0 is 1 since
contourC rotates aroundz0 once counterclockwise.

Theorem 1 (Residue Theorem).Let A be a region and
z1 , . . . ,znPA be n distinct points inA. Let f be analytic on
01621
a

,
e
-
n.
le
a
her
-

s
n
a
e
n

e

o
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-
.

A except for isolated singularities atz1 ,z2 , . . . ,zn . Let C be
a closed curve inA homotopic to a point inA. Assume that
no zi lies onC. Then,

E
C

f ~z!dz52p i(
i 51

n

res~ f ,zi !ind~C,zi !, ~A3!

whereres( f ,zi) is the residue off at zi and ind(C,zi) is the
index of C with respect tozi @33#.

After applying the residue theorem, we have

E
C
tanhz sech2zeiszdz5 ips2e2ps/2. ~A4!

On the other hand,

E
C
tanhz sech2zeiszdz

5E
2R

R

tanhx sech2xeisxdx1E
0

p

tanh~R1 iy !sech2

3~R1 iy !eis(R1 iy)dy1E
R

2R

tanh~x1 ip!

3sech2~x1 ip!eis(x1 ip)dx1E
p

0

tanh~2R1 iy !

3sech2~2R1 iy !eis(2R1 iy)dy. ~A5!

Observe that

lim
R→`

E
0

p

tanh~R1 iy !sech2~R1 iy !eis(R1 iy)dy50,

~A6!

lim
R→`

E
p

0

tanh~2R1 iy !sech2~2R1 iy !eis(2R1 iy)dy50,

~A7!

and

E
R

2R

tanh~x1 ip!sech2~x1 ip!eis(x1 ip)dx

52e2psE
2R

R

tanhx sech2xeisxdx. ~A8!

Therefore,

lim
R→`

E
C
tanhz sech2zeiszdz

5~12e2ps!E
2`

`

tanhx sech2xeisxdx, ~A9!

and

E
2`

`

tanhx sech2xeisxdx5 i
ps2e2ps/2

12e2ps
5 i

ps2

2
cschS ps

2 D
~A10!
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from Eq. ~A4!. Similarly, one can find

E
2`

`

sech2xeisxdx5ps cschS ps

2 D , ~A11!

E
2`

`

x sech2xeisxdx5 ip cschS ps

2 D Fps

2
cothS ps

2 D21G ,
~A12!
cs

fe

ao

H.

ic

s

01621
E
2`

`

x tanhx sech2xeisxdx

5ps cschS ps

2 D F12
ps

4
cothS ps

2 D G , ~A13!

for any reals.
r
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