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Localized solutions in parametrically driven pattern formation
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The Mathieu partial differential equatidi®DE) is analyzed as a prototypical model for pattern formation
due to parametric resonance. After averaging and scaling, it is shown to be a perturbed nonlinetin@ahro
equation(NLS). Adiabatic perturbation theory for solitons is applied to determine which solitons of the NLS
survive the perturbation due to damping and parametric forcing. Numerical simulations compare the perturba-
tion results to the dynamics of the Mathieu PDE. Stable and weakly unstable soliton solutions are identified.
They are shown to be closely related to oscillons found in parametrically driven sand experiments.
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I. INTRODUCTION called oscillong9]. An oscillon is a small, circularly sym-
metric time dependent excitation that resembles an active
The standard model for the instability of a harmonic os-volcano. It is subharmonic, that is, the frequency of the os-
cillator due to parametric forcingparametric resonangés  cillon is half of the driving frequency. The oscillon resembles

the Mathieu equatiopl] which can be written as a peak during one cycle of the container and a crater on the
next cycle. The experiments show hysteresis: An oscillon can
Ayt (w?+ e cosqt)A=0. (1) be observed only when the forcing amplitude decreases in a
certain range of the forcing frequency.
Here, w is the eigenfrequency of the oscillater,is a small Localized structures have been discussed for various
forcing amplitude, and is the forcing frequency. The trivial models: the nonlinear Schiimger equation[10,11], the
equilibrium becomes unstable éf/q=k/2,k=1,2,.... By  Ginzburg Landau equatiofil2—17, the Swift Hohenberg

including nonlinearity and damping, the Mathieu equationequation[18], and others. Localized structures are, in gen-
has become a prototype nonlinear oscillator for studyingsral, explained through a homoclinic or heteroclinic orbit
parametric resonance, in much the same way as the Lorerigolitong in a dynamical systerfil9,20. Previous work on

system and the van der Pol oscillator represent chaos antle study of localized pattern formation related to parametric
self-excited oscillations, respective]lg]. resonance includes specific hydrodynamic models for the

Recently, Ranet al.[3,4] and Armbrusteet al.[5] have  analysis of the Faraday experimef4]. The resulting cubic
included spatial interactions into the Mathieu equation tononlinear Schidinger equation was analyzed by Laedke and
study the continuum limit of a line of coupled pendula with Spatschek22] and by Elphick and Merof23].
vertical forcing[3] and to describe the pattern formation due  The Mathieu PDE has been studied using a low-
to the parametrically driven forcing. Motivating physical ex- dimensional Galerkin approximation in Ref8,4]. It shows
periments for the pattern formation aspects include the Fampattern formation through one or a few spatial modes. How-
aday experiment of a vibrating layer of fluj@] and related ever, since any localized structure has a very broad Fourier
experiments on vertically vibrating layers of sgd. In all  spectrum, a low-dimensional Galerkin approximation neces-
cases, the trivial equilibrium becomes unstable at a particulagarily misses localized structures. The Mathieu PDE has also
forcing frequency and forcing amplitude, creating patterns obeen studied using averagii§]. The averaged Mathieu
surface wavesgsand patternsthat oscillate with half the fre-  equation turns out to be similar to the complex Ginzburg
quency of the forcing. It is hopefb] that the spatially ex- Landau equation or the nonlinear Sctirmer equation
tended Mathieu equatiofthe Mathieu partial differential (NLS). Armbruster et al. [5] performed local bifurcation
equation(PDE)] can be considered as a prototype for theseanalysis and a numerical path following analysis, which are
parametrically forced pattern formations, in such a way thatestricted to a small number of Fourier modes. They were
certain features in parametrically forced pattern formationtherefore not able to study localized structures.
experiments are universal, i.e., independent of the specific This study takes advantage of the fact that the averaged
physical mechanisms. The resonance regfmold tongue  Mathieu PDE can be considered as a perturbation of the non-
[1]) for the 2:1 resonancekE 1) is the largest in parameter linear Schrdinger equation. Specifically, the NLS is inte-
space, while higher-order Arnold tongues quickly close upgrable and has a continuum of soliton solutions, which are
We therefore concentrate the following discussion on the 2:Epatially localized standing or traveling waves. Using adia-
resonance. batic perturbation theory for solitons developed in R2#],

In addition to regular patterns, very localized patternswe derive a set of ordinary differential equatid@DES that
have been observed in these experiments. Standing solitatiescribe the behavior of the soliton solutions under perturba-
waves were observed in Faraday experiments with fluids inions. We show that these ODEs have nontrivial steady state
Ref. [8]. The most spectacular localized phenomena argolutions, which represent solitons that survive the perturba-

tions and that resemble spatially localized solutions of the
NLS. Numerical simulations of the NLS and of the Mathieu
*Electronic address: armbruster@asu.edu PDE confirm the existence of these steady and oscillating
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f At this stage, the averaging procedure is purely formal. How-
ever, assuming that attractors of the Mathieu RREand the
averaged Eq(3) can be captured by finite-dimensional sys-

1=25 tems, the averaging theorem for ODEs applies and hence

1=-25 solutions to the averaged equation staye) close to the
g% solutions of the original equation on a time scaleQffl/e)
) [26].
Under the assumption that forcing, damping and, detuning
(the parameterd,y, and 6) are one order of magnitude
smaller than spatial coupling and nonlinearitygnd«), we
@ @ can transform the averaged Mathieu P[HE The transfor-

mations

t'=

e

lead to the scaled averaged Mathieu PDE
FIG. 1. Phase portraits for the undamped nonlinear Mathieu

equation(ODE) for «<0 in Eq.(2).

0 3

1 _
iut+§uxx+|u|2u=—5u—iyu—Eu, (5)
solitons, respectively. Depending on the perturbation param-

eters, the stable steady state of the ODEs corresponds {ghere we have dropped the prime after the transformations.

stable or weakly unstable solutions of the PDEs. After another transformation
The rest of this paper is organized as follows. Section Il
starts out from the averaged Mathieu PDE. It is shown to be u'=exp(—idt)u, (6)

a specific perturbation of the NLS. Section II B uses the
adiabatic approximation to the NLS to derive a set of ODEswe can write Eq(5) as a perturbed standard nonlinear Sehro
Section Il C analyzes these equations, and Sec. |l comparelnger equation
the numerical simulations of the ODE, the NLS, and the
Mathieu PDE near the localized solutions. We conclude by _ 1 )
discussing the relationship of our work to REZ2] and with U+ 5“xx+|u| u=eP, v
an outlook for further work.
where

Il. THE MATHIEU PDE

. f— .
We consider a 2:1 resonance case for our study of Bq. eP=—lyu— U exp(—2idY) 8)

and add weak detuning, damping, spatial coupling, and a
cubic nonlinearity. The resulting system, called the Mathieus a small perturbation that slowly oscillates in time. From
partial differential equation, is now on, we assumea<0 which corresponds to a NLS with
focusing cubic nonlinearity. The parameters §, andf are
A+ A=e(SA— yA— aA3+f cos 2A+dA,,), (2) assumed to b&(e) in Eqg. (8). We also assume that the
domain of thex variable is (~«,©) and that the equation

. . has fast decaying zero boundary conditionxat*=o. The
whereA is a scalar variable and, v,f,d,a are constants for cL ying y

. : . | . . ollowing section will study Eq.7) in detail. While there
detuning, damping, parametric forcing, spatial coupling, anthyiss many studies that analyzed the damped and driven NLS
nonlinearity, respectively.

28,29,22 h Il f i forci I i
The ordinary differential equation for the case a0 ((28,29,22,39, they all focused on direct forcing, leading to

. ; an extra constant term. They did not consider parametric
has been discussed in many papé&g., Refs.[25-27). y P

Phase portraits for an undamped Mathieu equation are shov&ﬂ:dng [represented i'ﬁ.) by the term iqvolvingJ in Eq' (8)].' .
in Fig. 1. In the case of negative, the zero solution bifur- e only other analysis that deals with parametric forcing is

cates subcritically at the bifurcation parameter0 when Ref.[22]. We will comment on their work in the Conclusion.
is negative, and bifurcates supercriticallyfat26 whené is

positive. For 6<f<—26 and §<0, the system is bistable. A. The perturbed nonlinear Schrodinger equation
Following the analysis in Ref5], we can average EqR) A single soliton solution to the nonlinear Schinger[Eq.
to get (7) with e=0] can be written as

u(x,t)y=2vsech2v(x—2ut—xg) lexgi2u(X—2ut—Xq)
. (3)

el sutd 3a 2 f
Ur=>| i1 dutdug— —=[u["u+ zur —yu +i(2u?+20)t+i o], ©
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for constantsy, u, Xg, andoy, as shown in Refl31]. The  whereP stands for the perturbatiditEq. (8)] evaluated with
constanty determines the amplitude and the pulse width ofthe ansatazi(x,t) of Eq. (10). For the case of pure dissipative
the solitary wave. Its speed and frequency are affected by thgerturbation ¢>0 andf=0), the integrals of the right-hand
constantu, and its phase constants are determined by thsides reduce to

other two constantg, and o. For the general type of soli-

tary wave solutiong9), the amplitude of the pulse is in- du dv

versely proportional to the pulse width. The speed of the G0 g~ 2 (15)
solitary wave solution is independent of the pulse amplitude,

which differs from the solitary wave solution of the Ko- dé do

rteweg de Vries equation. gt 2m H:2M2+ 212, (16)

The nonlinear Schiinger equation has been studied with
different perturbations. Dissipative terms, some forcing_l_h i iiv b ved to ai
terms, dispersion terms, some random functions as well as €se equations can easily be solved to give
numerical simulation have been discussed in Refs. _ = oexpl — 291) 17)
[31,32,24,1Q In general, if the perturbation is purely dissi- K= Ho, V= V0 Lo
pative, it damps the soliton solution and eventually destroys 2
the soliton. For general perturbations, a balance may exist,_ __ Yo -~ _ 2
which allows sorge solitogs to survive. g £=2pott &, @= Zy[exp( Ay0) — 1]+ 2upt+ @,

(18

B. Adiabatic approximation where ug, vo, &, andw, are initial conditions foru, vé,

To determine this balance, we are using the adiabatic pend », respectively. The amplitude of the solitary solution
turbation theory24] developed for the evolution of a single (2v) decays with time for positivey, as expected. If the
soliton solution under perturbations. Specifically, we paraminitial speed (2,) of the soliton is nonzero, the soliton os-
etrize amplitude, frequency, velocity, and phase of the solicillates and drifts, but dies out.
ton, and neglect any other changes in the shape of the pulse
and tail formation. C. The perturbation equations

Therefore, we look for the soliton pulse solution to the

perturbed nonlinear Schinger equatior(7) in the form of Using complex integration, the integrals of E¢fsl)—(14)

can be evaluate@see the Appendijx The resulting system of

U(x,t)=2v sechc expli wl v+iw), k=2v(x—&). ordinary differential equations is
(10 2
d,u, f7T,LL y’ans
T csC - sin(2w+26t), (19

The envelope of the approximatidthe sech profilgis kept
during the time evolution. In addition, we have some balance

between the amplitude and the width of the pulse, that is, the dv = 2yvtfmp csc)’( ﬂ) sin2w+248t), (20
inverse proportionality between them. dt 4
With this ansatz, the parameters in Ed0O) evolve ac-
cording to the following system of ordinary differential equa- d far T\ | T T
tions: g gsy y a d—f: =+ Hcsc)‘( —”) 7”cotk( 7'“) —1l|cog2w+26t),

(21)

———(—iP)e #lvTleg, (11 dow fr T
. coshr ) “ ) ——2,u2+2v2+2—;ucscl‘(—'u>

dt v
21 T
_ﬂcotr(_ﬂ) 4

14 14

Note thaté decouples and we only have a system of three
variables. We use new variablesand w such that

d,u_e jw tanhx
dat 2™

cog2w+26t). (22

dv € *° . Ciuklv—i X
EZEREJ sechk(—iP)e™'#xv=lod g, (12

9 _pur© Dejm S (~iP)e ikslring
dt M7 4,27 ) .coshk o u
(13 =" w=w+ ot (23
do dé , , € » 1— ktanhxk to get a system of three autonomous equations:
at Mg 2H +2V+Zlmf_m coshk
7 e T iy 24
X(_ip)e*i/J,K/V*ia)dK, (14) H_ nY— Sinf'(wn)sm( (1)) ’ ( )
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FIG. 2. Parameter regions for the existence of nontrivial fixed

points of the ordinary differential equatiori®4)—(26): (a) One
stable nontrivial fixed point(b) Two nontrivial fixed points, one
stable and one unstable.

ot T oz 25
T I Wsm( o) |, (25
do T
e 20 2
T 6+2vi(ny +1)+2$inh(7777)
27 cosimn) ~
W—l coY2w). (26)

The right-hand sides are not defined wher=0 since
sinh(0)=0, but the limit exists such that at=0 we define

47 o O o tsin2E
a_ ’ a_v[ Y Sll’( w)],

do _ o224 feogan 2
T + v+§cos( ). (27)

The nontrivial fixed points £>0) are

1 1 1/2
7. =0, v*=(—§5izx/f2—4yz) :
o, —arct (29)
w, =zarctan — .
*2 212+ 6

There is only one nontrivial fixed point fdr>\/46%+4+?
[regiona in Fig. 2]. There are two nontrivial fixed points for
2y<f<\[48°+4+? when <0 [regionb in Fig. 2]. Note
that d&/dt is also zero at the fixed pointy ,v, ,o,),
which gives us the constant solutign= ¢, . These results
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etersf, v, and § have to be of the same order of magnitude.
This implies that the adiabatic perturbation theory is an un-
folding analysis in a full neighborhood of zero for those
three parameters.

The eigenvalues of the linearized system at these fixed
points are

N=—27y,— y= V2 +8f 2 coq2w,) (29)

giving us a stable fixed point for coéZ)g)<O. Since f

> 46+ 4y~ in regiona, the only nontrivial fixed point is
stable. In regiorb, one fixed point is stable and the other is
unstable(Fig. 2). The soliton

u(x,t)=2v*secr(2v*(x—§*))exqic~u*) (30

corresponding to a fixed point is the corresponding approxi-

mate solution to the perturbed nonlinear Sclinger equa-

tion (5). It is a steady solution that neither drifts nor oscil-

lates. It becomes an approximation of a solution to the

averaged Mathieu equatio(8) after recovering the time

scalet, the length scal&, and the scale for the solutian
Here,

A(x,t)=2v, sech2v, (x— &, ))codt—w,) (31

is the approximate solution to the Mathieu partial differential
equation. It has a pulselike spatial structure and can be ex-
pected to be a good approximation on a time scale of the
order of 1£. Note that the solutiorf31) does not drift but
oscillates with a period of 2, twice the forcing period.

IIl. NUMERICAL SIMULATIONS

To study the validity of our multistage perturbation analy-
sis, we simulate three different equations and compare them.
First, we simulate the three-dimension@D) ordinary dif-
ferential equation§24)—(26). Second, we simulate the scaled
averaged Mathieu PDEhe perturbed NL5(5). We use a
central difference scheme for space differentiation and a
Crank-Nicolson method for time integration. Last, we simu-
late the time dependent Mathieu POB). We use central
difference schemes for both space and time differentiations.
The goal of these simulations is to determine whether attrac-
tion to the stable nontrivial equilibria found analytically in
the ODESs(24)—(26) corresponds to attraction to stable soli-
tons in the perturbed NLS and to stable localized oscillonlike
solutions in the Mathieu PDE.

A. Ordinary differential equations

We simulate the system of ordinary differential equations
(24)—(26) with the parametrsf=0.05, §=0.01, andy
=0.0125. Figures @—3(c) shows the time evolutions of
each variable with various initial conditions. Solutions ap-
proach the nontrivial fixed point. Note that the variabig

raise an important issue on the order of magnitude of thalways decreases and variablegs,) spiral in after some

detuningé. While the original perturbatiofiEq. (7)] places
no restriction on the order of magnitude éf the above

transient time as the linear stability analysis suggested.
The simulations also confirm the numerical value of the

results for the fixed points clearly indicate that all the param-nontrivial fixed point. The nontrivial fixed point, however, is
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FIG. 3. Time evolution of solutions to Eq&4)—(26) for f =0.05, §=0.01,
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500 1000 1500

500 t 1000 1500

(d)

andy=0.0125, and various initial condition&) 7, (b) v,

not a global attractor. The solutions approach zero for some The time evolution of the corresponding adiabatically ap-
proximated soliton is shown in Fig. 4 at tinte=0, 25, and
1500. The profile at=1500 in Fig. 4 is almost the same as

initial conditions as shown in Fig.(8). The basin of attrac-
tion for the nontrivial fixed point is mainly constrained lyy

being small enough.

0.25

0.2r

0.15¢

01r

0.05¢

—?00

100

the nontrivial fixed point.

0.08
0.08¢
0.07r
0.06
Fte(uc))'05
0.04
0.03
0.02
0.01
0

0%

-50

0 50 100

FIG. 4. The adiabatically approximated soliton solutions parametrized by the time evolution of the (QDE®R6) att=0 (---),
25(---), 1500(—) (a) envelope(b) real part. Note that the graph for the soliton corresponding to the fixed point is the same as the solution

att=1500.
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FIG. 5. Soliton solution(real par} corresponding to the nontrivial stable fixed point () and numerical solution of the perturbed
nonlinear Schrdinger equation(—). Shown are real parts of the soliton &t0,30,80,120 with initial condition ofu(x,0)

=0.1 sech(0.4)exp(1.3).
2. Region b

The parameters=0.05, 6=—1.0, andy=0.0125 are
. . : ‘ representative for simulations in regitnof Fig. 2. In this
dinz(()err (tar;euastilgnnm?;gr;)Sre(s)Ia;P?esj:;u;gfia?gﬂgﬁﬁr OSSehro case, an i!"nitial conc_iition near the stable fixed point_lgads toa
5=0.01 andy=’0 0125. These values correspond t<; re'gionSFa.‘ble soliton solqnon of the perturbed NLS. An |n|t|al'con_—
ain I.:ig' 5 Other.pararﬁeter values in regiarshow quali- dition c_orre_spondlng to Fhe s_n_a_pshot of a moving _sollton is
tatively .sirﬁilar features. Figure 5 shows that, given initial shown in Fig. 8. The sol|ton_|n|t|_ally moves to the nght,_but
conditions near or a Iittlé away from the correéponding non-SIOWS down .and stops moving in a sha_pe qorrespondmg 0
linear fixed point, the real parts of the numerical solutionsthe fixed point of the ad|ab§1t|c approx!manon. The phase
initially move to c;r stay near the adiabatic approximation ofShlft Sh.OWS the effect of a varlabte_descrlblng the p_hase of
the nontrivial fixed point and then they lose their “sech” the_ sollt_ons, n I_Eqs(1_9)—(22). In this parameter region, the
profiles. Tip splitting of the peak of the soliton destroys thea@abat_m solutu_)n 'S .stable. not on_ly for the lower-

: dimensional ordinary differential equation but also for the

shape of a one-soliton solution. . - .
Pe ¢ : . . . c;:)erturbed nonlinear Schdimger equation.
As time increases, the numerical solution continues t

split the tip of the central peak until it develops regularly
spaced patterns. Figuréah shows patterns for four different
initial conditions att=500. It is important to note that a®(1) time scale in the
The tendency to approach the corresponding nontriviaperturbed NLSEq. (5)] corresponds to a®(1/e) time scale
fixed point solution can be seen in Fighy, which shows the in averaged Mathieu PDEEq. (3)]. Hence, we expect the
distances(2-norm between numerical solutions and the unstable soliton in regiom to persist as an oscillon for a
adiabatic stable soliton solution. The norm decreases initialljonger time.
for all initial conditions, but starts to increase eventually. It For §=0.01, f=0.05, andy=0.0125(in the region ofa
shows that the adiabatic soliton is unstable in the perturbeth Fig. 2), Fig. 9 shows four snapshots within one period of
nonlinear Schrdinger equation, even though it is stable an oscillon solution. The time evolution of such an oscillon
within the lower-dimensional approximation. is shown in Fig. 10. The solution oscillates and tends to

B. Perturbed nonlinear Schradinger equation

1. Region a

C. Mathieu partial differential equation

016213-6
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FIG. 6. Long time behavior of the real parts of the solutions of the perturbed NLS with various initial conditibas@®d: u(x,0)

=0.2 sech(0.2)exp(1.3),
=0.15 sech(0.125exp(0.3).

0 10 20 30 40 50
time

FIG. 7. Distances(2-norm) between the numerical solutions
and the stable adiabatic soliton solutiGeal part$ with various
initial  conditions: u(x,0)=0.2 sech(0.2)exp(1.3), u(x,0)
=0.1 sech(0.2)exp(1.3), u(x,0)=0.15 sech(0.15exp(0.000k
+1.2), andu(x,0)=0.15 sech(0.2§exp(0.3).

u(x,0)=0.15 sech(0.D5exp(0.000k+1.2),

u(x,0)=0.15 sech(0.09exp(0.X+1.3), and u(x,0)

adjust its amplitude to an oscillon initially. It loses its sech
profile after a significantly longer time than in the case of the
NLS.

In region ofb of Fig. 2 (parameters=—0.7, f=0.1, y
=0.04, e=0.5,d=0.5, anda= —4/3), we find a oscillon-
like solution(Fig. 11) that is stable for as long as we care to
simulate. Typically, amplitude and profile of the oscillon are
determined by the system parameters, regardless of initial
condition. However, the final position of the oscillon is de-
termined by the initial condition which may lead to a tran-
sient drift.

We also observe that solutions die out for different initial
conditions. This corresponds to the fact that regiois a
bistable region for the Mathieu PDE.

IV. CONCLUSION AND FUTURE WORK

We have studied the effect of parameteric driving on the
formation of localized subharmonically oscillating patterns.
Such patterns have been observed experimentally in shaking
sand experiments and are called oscillons. As a prototype of
such a parameterically driven pattern formation, we studied
the Mathieu partial differential equation with weak damping,
detuning, and nonlinearity. We showed that, upon averaging
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04r
. 0.3t
Re(u) Re(u)
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X X
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-0.1 : : : -0.1 : - :
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FIG. 8. The real part of the numerical solutibr-) and the stable adiabatic solution () att=0,100,400, and 800 with initial condition
u(x,0)=1.42 sech(1.42exp(0.X+1.3).

the Mathieu PDE, the resulting system can be rescaled as a The stability analysis of these localized solutions shows
perturbed cubic nonlinear Schiinger equation. some interesting complications. Figure 2 shows two regions

Adapting a perturbation method for solitons derived byin the parameter space of forcing and detuning, labaladd
Ref. [24], called the adiabatic approximation, we derive ab, where we find stable solutions to the adiabatic ODE. Nu-
system of ordinary differential equations which representsnerical simulations of the Mathieu PDE as well as the per-
the time evolution of crucial parameters of a solif@mpli-  turbed NLS, however, show stable attraction to the corre-
tude, frequency, and phasender the perturbation terms sponding soliton solution of the Mathieu PDE only in region
coming from the Mathieu PDE. We show that nontrivial b. In regiona, the simulations show an initial attraction to
stable fixed points of this system of ODEs exist in the saméhe steady soliton solution. However, after what seems like a
parameter regions where the Mathieu equation has nontrividime scale ofO(1) for the NLS and a time scale @(1/¢)
fixed points. However, the fixed points of the adiabatic ap-for the Mathieu PDE, the soliton shows successive tip split-
proximation represent isolated soliton solutions to the NLSting, until an extended pattern in space is achieved. In region
equation which survive the presence of dissipative and forck, depending on initial conditions, we also find solutions that
ing terms. This is reminiscent of a Melnikov analysis of abecome attracted to zero. Hence, region B is bistable for the
perturbation to an integrable nonlinear ODHE, which al-  Mathieu ODE and shows a stable localized oscillon solution
lows us to determine the periodic orbit that survives the nonfor the Mathieu PDE. This corresponds to the fact that oscil-
integrable perturbations. lons experimentally are associated with hysteresis.

The resulting localized solution of the Mathieu PDE has Our analysis of the perturbed NLS is closely related to,
many features of the oscillons: They are subharmonic, thegnd complements, earlier work by Laedtke and Spatschek
do not drift (although most of the solitons of the NLS)do [22] and by Elphick and Merof23] on Faraday resonance in
and they can be arbitrarily shifted in space, assuming afiuids. Laedke and Spatschek analyzed the homoclinic orbit
infinitely extended domain. Experimental evideficéshows  (steady solitohassociated with the steady states of the per-
similar features for the oscillons: They are localized, subharturbed NLS. They determined the stability of this stationary
monic, seem to occur at random positions, do not travel syssoliton by a linear perturbation analysis using operator
tematically but seem to jitter randomly. theory of periodic Schuinger operators. They found that
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FIG. 9. Four snapshots within one period of the Mathieu PDE&er0.01, f=0.05, y=0.01 €=0.01, d=0.5, anda=—4/3. The
envelope corresponding to the fixed point of the ODEs is shown as the dashed line.
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FIG. 10. Time evolution of the oscillonlike solution in the Mathieu PDE for an initial condiigi,0)=0.3 sech(0.8)cos(1.3),
Ai(x,0)=0.3 sech(0.8)sin(1.3). Parameters as in Fig. 9.
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FIG. 11. Time evolution of a stable oscillonlike solution in the Mathieu PDE. Initial condi#igx0)=1.2 sech(1.82)cos(0.k+1.1),
Ai(x,0)=1.2 sech(1.2)sin(0.x+1.1).

the stationary solution is linearly unstable in regeom Fig. As a result, in their ODEs for the perturbation equation
2 and showed linear stability in regidrfor a restricted set of the terms of the order af in equation forp andw disappear.
perturbations. Specifically, they show linear stability of theHence, the fixed points corresponding to solitons that survive
nontrivial soliton with phase shift zero with respect to odd-the perturbations are given by the solution of siF2y/f.
function perturbations. Numerical simulations confirmed theOur analysis, which allows for a phase variation, adds a sec-
result and the transition to a regular pattern in region ond constraints+ 212+ (f/2)cos 20=0. Consequently, El-
Their work complements the research presented here iphick and Meron describe only the bifurcation néar2y
the following sense. The adiabatic approximation used herand 6<0, i.e., the transition into regiob in Fig. 2 from

is a perturbation method on tilution manifold of althe ~ Pelow. _
soliton solutions of the NLS. Our analysis allows us to de- Our study extends these results by setting all parameters

termine the dynamics on this solution manifold under pertur—‘s’% andf to the same order of magnitude. In effect this

bations. In this sense, it is global method as opposed to treats the problem as a degenerate bifurcation problem,

. k . . which allows an unfolding in a ball aroundd(y,f)
local analysis. In particular, we show that in regibnthe =(0,0,0), thus allowing to extend the analysisdo-0 as

system has three surviving solutions; a stable soliton, an URye|| as to the regiora of Fig. 2. Additionally, by allowing
stable soliton, and the stable trivial solution. A basin of at-for 5 slow time dependence of the phase, we can use the time
traction for the stable soliton can be estimated. The correcéyolution of ¢ [Eq. (21)] to determine the eventual exact
phase of the resulting stable localized solution can be deteposition of the soliton where it stops traveling, as a function
mined based on an initial perturbation. Nevertheless, thef its initial perturbation.

adiabatic perturbation theory is still a finite-dimensional ap- There are the following interesting avenues for future
proximation to a PDE. In particular, it allows only perturba- work.

tions that have zero boundary conditions at infinity. Hence, (1) We studied the cubic nonlinearity in the Mathieu PDE
apparently, it does not include the perturbations, whictthat leads to the focusing nonlinear Satirger equation. In
makes the trivial solution unstable. This explains why

Laedke and Spatschek found the correct stability of the lo-

calized solution in regiom and why the adiabatic perturba- —
tion method misses it.

Elphick and Meron[23] derive the perturbed NL$EQ.
(7)] for the specific example of Faraday surface waves. They Y
derive a system of differential equations closely related to
our Egs.(19—(22) through an adiabatic-type perturbation
method. Their analysis differs in two crucial points.

(1) The detuning term in Ref23] [ § in our Eq.(8)] is of - i
one order larger than the forcing and the damping terms. -R 0 z

(2) The perturbed soliton has no slow time evolution of
the phase. FIG. 12. Integration contout.
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a subsequent work, we will extend the work of &3] who A except for isolated singularities at,z,, . .. ,z,. LetC be
have also studied the defocusing case corresponding to aclosed curve iA homotopic to a point irA. Assume that
dark soliton for the NLS to include a ball around,{,f) no z; lies onC. Then,
=(0,0,0) in parameter space. n
(2) Experiments are done with a two-dimensional surface, . Y _
and oscillons are really rotationally symmetric objects. The ch(z)dz‘z”'; res(f,z)ind(C,z), (A3)
extension of the Mathieu PDE to two spatial dimensions re-
places the second-order spatial derivative by a Laplacianwhereres(f,z) is the residue of atz; andind(C,z) is the
However, the resulting averaged equation is not a simpléndex of C with respect taz; [33].
perturbation of the NLS and cannot be studied directly via After applying the residue theorem, we have
the same perturbation methods. It remains to be seen whether
symmetry will allow us to reduce the two-dimensional sys- f tanhz secRzds?dz=iws2e ™52, (A4)
tem to the present study. c
(3) Experiments are done in a finite domain. It seems
reasonable to expect that approximate solitons will survive i the other hand,
a finite domain that is an order of magnitude larger than a
characteristic length of the soliton, but that needs to be ftanhzsecﬁzeiszdz
proven. We would also expect that there is a boundary region c
of the size of the characteristic length of the soliton where

R T
boundary conditions and the soliton interact to form new =f tanhx secﬁxeisxderf tanR+iy)sech
dynamics. —R 0
(4) Experiments show interacting oscillons: there are two _R
and three oscillon moleculd¥] as well as almost spatially x(R+iy)eiS(R+iy)dy+J tanh(x+ i)
extended oscillon patterns. A first step to model these inter- R
acting oscillons is to study the perturbation theory of inter- 0
acting solitons. ><secﬁ(x+i77)e‘5(x“”)dx+f tani(— R+iy)
w
ACKNOWLEDGMENTS x secl(— R+iy)e'SCRTY)dy. (A5)
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[22]. lim f tanh(R+iy)secR(R+iy)e'SR*¥)dy=0,
R-xJ0

. (AB)

APPENDIX: EVALUATION OF EQS. (11)-(14)

The integrals in the Eq$11)—(14) can be evaluated by a . jo oL P i aiS(—REIY) Ay
complex integration using the residue theorem. ketx ,ilTw Wtanr( R+iy)sechi(—R+iy)e dy=0,
+iy be a complex variable anf{z) be a complex valued (A7)
function such that q

an

f(z)=tanhz seciz€&*? (A1) -R o
f tanh(x—+i7)secl(x+im)e'S*+imdx
for any real values. Then, f(z) has singularities ar=i(k "
+1/2) 7 for integersk. Let C be the contour as shown in Fig. R
12 consisting of the real axis fromR to R, z=i7, —R<X € f
<R and two lines parallel to thg axis,z=R, O<y< and

tanhx seclxe's*dx. (A8)
R

z=—R, Osy=<m. Therefore,

Then, the only singularity off(z) inside C is at z
=im/2, sayz,. Sincef(z) has a pole of the order of 3 at lim f tanhz secRzes%dz
=24, the residue can be calculated as R C

2 — — 7S iSX
residue=—Iimd—(z—zo)Sf(z)=lsze*”S’2. (A2) =(1-e )ﬁxtanhxsecﬁxe' dx, (A9)
2!zﬂzod22 2
and

It is clear that the index o€ with respect toz, is 1 since B PR 2
contourC rotates around, once counterclockwise. tanhx secRxeS*dx=i &:i Ecscr{ W_S)

Theorem 1 (Residue Theorentet A be a region and —oo 1—-e 7™ 2 2
Z4, . ..,Z,e A bendistinct points inA. Let f be analytic on (A10)
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from Eq. (A4). Similarly, one can find

> . s f x tanhx sechxe'$*dx
f msecﬁxe'sxd X=1s cscl‘( 7) , (A11) o
s TS s
°° ) ) ws\| s s =S CSC|’( 7) 1- TCOtI’( 7) } , (A13)
jﬁwx sechxeS*dx=im cscl‘{ 7) 700&( 7) - 1} ,

(A12)  for any reals.
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